Canon autofocus systems are so easy to use and so effective that many photographers rarely switch to Manual Focus or MF (not to be confused with Manual exposure mode, denoted by M in the camera menu and on the mode dial, if your camera has one). But how do they work, and what do the different options mean?
When you use autofocus, there are a range of settings and options available, which may vary from camera to camera. For easier menu navigation and setting, all the AF settings and Custom Functions are grouped into one menu tab, so there is no need to jump into different menu areas to make changes. For example, these are some of the main choices available in the EOS R5 Mark II:
AF operation: One Shot AF (for still subjects), Servo AF (for moving subjects), or AI Focus AF mode, in which the camera chooses which of these two to use, according to the subject movement it detects. Find out more about AF operation modes.
AF Area (or AF Method on some cameras):
1-point AF – the camera focuses using a single AF point;
Spot AF – the camera focuses using an even smaller area than 1-point AF;
Expand AF area – there are two options here. With either, the camera focuses using a single AF point, but if it is unsure then it uses another AF point to assist, or may switch to that point instead – either the next point horizontally and vertically, or the next point diagonally. These are effective with moving subjects, which are difficult to track with 1-point AF;
Flexible Zone AF – uses auto selection AF within a larger area, optionally focusing on the nearest subject or using various criteria such as faces, subject motion and subject distance.
Whole area AF – uses a much wider area for autofocus (up to 100% horizontal and 100% vertical coverage, depending on the lens). As well as using subject distance and face tracking, the latest cameras offer animal and vehicle tracking. On some cameras, this appears as a separate Subject tracking menu option.
Find out more about AF methods.
Subject to detect – on the latest cameras with Intelligent AF, this instructs the camera to give priority to People, Animals, Vehicles or No Priority. On some cameras, a separate Subject tracking option must be enabled first. Find out more about AF configuration options.
Eye Detection on or off, plus on some cameras the ability to prioritise the subject’s left eye or right eye.
Register People Priority – Up to 100 people can be pre-registered on cameras that have this capability, and then the top 10 can be prioritised in order of importance. The camera will then automatically attempt to detect and track those faces in a scene.
Action Priority – once this is enabled, you can select a sport event – soccer, basketball or volleyball – and the camera will track specific actions that are typically seen in this type of game, without any intervention from the photographer.
Touch & drag AF settings (available on selected newer cameras including EOS R System models) – see the section below about specifying the AF point.
Movie Servo AF – Set the camera to keep focusing on the subject while you’re recording video. If you’ve specified a subject to detect, you have the option to activate Detect only, in which case Movie Servo AF stops if it is unable to detect the subject you’ve specified. This can be useful if someone walks out of a shot, as it will prevent the camera from refocusing on the background. This feature is common to Canon's cinema cameras.
CAMERA FEATURES
Everything you wanted to know about autofocus (AF)
How AF works in a DSLR or a mirrorless camera
In a DSLR, the main reflex mirror reflects light into the viewfinder. A sub-mirror behind the main mirror reflects some light into a dedicated autofocus sensor in the base of the camera, which consists of two 48-bit line sensors and associated amplifier circuitry. The light is split by a small lens assembly to form two separate images. One image is formed on the first line sensor, the other on the second line sensor. If the spacing of the two images is not correct, a signal is sent to the lens motor to bring the subject into sharp focus.
Despite many refinements over the years, this technology has limitations. It requires a series of complex components to be in perfect alignment for accurate focusing, and lenses may need to be calibrated for different DSLR bodies.
In Live View or video mode, the main mirror lifts up out of the optical path so that the imaging sensor receives light all the time. In this mode, the DSLR compares two points on the imaging sensor to gather autofocusing data. Mirrorless cameras such as EOS R System models use only this system, which has significant advantages. For one thing, the feed from the sensor can be displayed in a mirrorless camera’s electronic viewfinder as well as on the screen on the back of the camera, so you can see precisely what is (and isn’t) in focus, rather than having to check the image after you’ve shot it.
Dual Pixel CMOS AF
EOS mirrorless cameras and most EOS DSLRs use phase-detection autofocus, drawing on a special feature of their imaging sensor's design: Canon's Dual Pixel CMOS AF system, introduced in the EOS 70D in 2013.
Each pixel on the Dual Pixel CMOS sensor has two independent photodiodes (the parts of the sensor that record light intensity or brightness). The camera's processor compares the signals from the two photodiodes, and if they match, it knows that this area of the image is in focus. If there is any deviation between them, it looks at pairs of photodiodes across a group of pixels, and can then calculate which direction the lens needs to be adjusted to achieve sharp focus, and how much focus adjustment is required. In this way, Dual Pixel CMOS AF phase-detection focusing usually requires less trial-and-error and is more effective than the contrast detection system used in older DSLRs.
What's more, where other AF systems use only a limited number of dedicated individual pixels for phase-detect AF, Dual Pixel CMOS AF uses every pixel on the imaging sensor. This means that the active AF area covers in effect the entire image frame. It also gives the camera a significant advantage for tracking a subject around the frame, as there are no gaps between the AF points. It offers huge advantages for video, including smooth tracking of moving subjects and dazzling pull focus effects with touch screen control, and the technology is used in Canon's Cinema EOS professional cine cameras.
An updated version of the system, Dual Pixel CMOS AF II, was introduced in 2020 in the Canon EOS R5 and EOS R6. This operates in the same way, but supports EOS intelligent Tracking and Recognition Autofocus (EOS iTR AFX) with Deep Learning AI technology for high-speed, high-precision subject detection.
The next generation of the system, Dual Pixel Intelligent AF, debuted in 2024 in the Canon EOS R1 and EOS R5 Mark II. This delivers numerous enhancements in detection and tracking thanks to the new Accelerated Capture imaging platform. Powered by a new DIGIC Accelerator processor, which works in co-ordination with the DIGIC X image processor and a new high-speed CMOS sensor, Accelerated Capture unlocks the ability to more accurately track subjects by identifying faces and upper bodies, even when they are temporarily obscured from view. Dual Pixel Intelligent AF is also capable of targeting pre-registered faces in a scene, and supports Action Priority AF, which can automatically recognise and focus on specific types of action in football, basketball and volleyball.
In the EOS R1, the Dual Pixel Intelligent AF is advanced still further with Cross Type AF, enabling it to detect phase difference not just vertically, like other AF systems, but also horizontally at the same time. This enhanced sensitivity results in increased focusing accuracy and speed in low-light and low-contrast situations, and even more stable AF performance in continuous shooting mode.
Autofocus modes
Most EOS cameras offer two different autofocusing modes, and some offer three. Although the end result is that the lens automatically focuses, you'll get best results by setting the mode to suit the subject.
One-shot AF
One-shot AF mode suits most subjects that stay in one place while you take a photograph. The focus is locked with the first pressure on the shutter button.
One-shot AF is best if you don't know which mode to use – it's a good general-purpose setting to suit most subjects. In practice, you compose your subject in the viewfinder and half-press the shutter button. Among other things, this activates the autofocusing. The lens will focus on the subject, and then lock. A green focus confirmation signal will appear in the viewfinder to tell you focus has been achieved, and the in-focus beeper will sound (unless you have deactivated it).
As long as you keep partial pressure on the shutter button, the focus will not change, even if you move the camera to recompose the shot. This provides a very quick and convenient method of achieving focus lock. If focus is not achieved, the AF point will turn orange.
In One-Shot AF mode, the camera will not let you fully depress the shutter button to fire it unless the subject is in focus. This means that if the camera is unable to focus the lens, you will not be able to take a picture.
Servo AF
Servo AF mode is designed for fast-moving subjects. The camera calculates where the subject will be at the moment the shutter fires and focuses the lens accordingly.
Servo AF does not utilise focus lock as One-Shot AF does. It continually checks the focus and refocuses the lens each time the camera-to-subject distance changes, right up to the moment of exposure. This makes it ideal for photographing moving subjects − you can retain partial pressure on the shutter button as you follow the subject with the camera, applying full pressure to take a picture at the key moment.
When focus is achieved in Servo AF mode, the AF point will turn blue. But one potential problem is that Servo AF allows the shutter to be fired even if the subject is not in focus. If the lens has not finished refocusing or has failed to find the focus, you will end up with an unsharp image.
Since the system is a predictive one, it continually calculates the next position of the subject being tracked by comparing focus distance results as they are received. The algorithm ignores a reading if it is significantly different from what is expected based on other results. This helps to reduce the lens jumping completely out of focus.
AI Focus AF
AI Focus AF mode (available in some cameras) switches between One-shot AF and Servo AF according to the movement of the subject. The camera makes the decision.
One-shot AF is good for static and slow-moving subjects; Servo AF is better for subjects moving at speed. But when should you switch? The camera works that out. If AI Focus AF is selected, the camera will automatically switch from One-shot AF to Servo AF mode when it detects subject movement of a certain speed.
The camera detects movement by taking several AF readings as the shutter button is partially pressed. If the subject distance changes between readings, the system concludes that the subject must be moving. The variation between distances allows the camera to determine the speed of movement.
If you mostly shoot landscapes and other static subjects, AI Focus AF could be a good default setting for your camera. The odd times when you encounter a subject travelling at speed, you won't have to remember to change the AF mode. Most photographers shooting sports and wildlife prefer to set Servo AF.
Predictive focusing
If you're photographing moving subjects, having the lens focus on the subject as you press the shutter button is not ideal. It does not take account of "shutter lag" – the very brief amount of time between pressing the button and the shutter actually opening. In a DSLR, the reflex mirror has to swing up to allow light to reach the sensor at the back of the camera. In a mirrorless camera, when using mechanical shutter, the shutter mechanism has to close and then open again for the exposure.
Shutter lag on modern cameras is very short − typically around 55 milliseconds in many professional cameras, only 20ms on the Canon EOS R3, and up to about 144ms for entry-level models. But let's take an average of 100ms and see how far a subject can move in this amount of time. Someone walking at a speed of 5km/h covers 1.4m a second. In a tenth of a second (100ms), they will cover 0.14m or 14cm. This is unlikely to have a major impact on the focus. But now imagine you are photographing a racing car travelling at 200km/h. This is 40 times the speed of the walker, so the distance covered in a tenth of a second will be more than 5m. This could easily throw the image seriously out of focus.
In its cameras, Canon overcomes this problem with predictive focusing. After making several readings in Servo AF mode, the camera is able to determine the speed and direction of travel of a moving subject. It can then build this information into the instructions passed to the lens, so that the lens focuses on the point where the subject will be as the shutter opens.
When Servo AF is set, the camera continuously records the position of the subject and predicts where it will be for the next frame, based on its motion so far. If the camera fails to detect the subject position in one recording period, the AI Servo AF algorithm will ignore the negative result and the next focus point is based on the previous accurate results. It will also ignore the results when the AF distance appears to jump greatly, so that it can continue to track a subject even if an obstacle passes between you and your subject (more on this later).
Equally, if there is a sudden large jump in the focus distance, the camera will not drive the lens to the new distance directly. Instead it will gradually drive the lens focus, based on the previous successful focus distance results.
The Accelerated Capture imaging platform introduced in the Canon EOS R1 and EOS R5 Mark II breaks new ground for predictive focusing. Using Deep Learning technology, it is capable of analysing an enormous volume of data at high speed. Not only does it provide more accurate subject tracking when shooting stills or recording video, it is able to automatically determine which player to focus on in certain sports based on what action is being carried out. It can be hard to anticipate what will happen next in a fast game of football, basketball or volleyball, let alone frame it and get it in focus. But Action Priority AF can take care of the latter, intelligently determining what's happening and instantaneously shifting the AF point to the player that’s shooting, passing or dribbling the ball, for example, without the photographer having to move it manually.
AF point selection methods (AF method)
Although having many AF points allows the subject to be targeted precisely, there are times when it's convenient to group the points to cover a wider area, making the subject easier to locate. For this reason, EOS cameras have a number of AF point selection methods that determine how the active AF point is selected. These methods vary depending upon whether you're shooting with a DSLR in viewfinder mode or in Live View mode, or if you're using a mirrorless EOS camera, but they function in a similar way.
Using Single Point AF or 1-point AF method, the photographer can select a single AF point from all of those available for the camera to use for focusing. Conversely, in Automatic Selection, the camera selects from any of the AF points available to focus the subject.
Single Point Spot AF or Spot AF is the same as Single Point AF and 1-Point AF, but in Spot focusing method the camera uses a smaller section of the AF sensor to allow you to more precisely place the AF point on the selected subject. This is useful when shooting past obstacles, such as when focusing on an animal lying in long grass. However, Spot AF is not recommended for fast moving subjects or in very low light conditions. When you're using either of these two options the non cross-type AF points will blink during AF point selection so that you are aware if the AF point you wish to use is a cross-type point or not.
Some cameras also feature a couple of Expand AF area or AF Point Expansion settings for more control over tracking moving subjects. In AF Point Expansion mode, a single AF point is selected manually and the camera then uses that point plus four or eight surrounding points to help track the subject. These are very useful for sports photography when you're able to keep the active area over the subject. It's easier to keep a group of AF points over a moving subject than a single AF point.
Several EOS cameras also have a Zone AF method and in some cases more than one with additional options such as Large Zone AF: Vertical and Large Zone AF: Horizontal, or the customisable size and shape of Flexible Zone AF, introduced on the EOS R3. These options allow you to target specific areas or zones of the image frame for focusing. The photographer selects the zone while the camera selects the particular AF points to use within that zone.
The Zone AF options are useful when you know approximately where the subject will be in the frame and it would be hard to keep a smaller active area over the subject.
Some cameras have Whole area AF, which uses auto-selection AF in the entire frame to cover a larger area than flexible Zone AF – especially useful for moving subjects. The focusing area is determined by a variety of factors such as faces (of people or animals), vehicles, subject motion and subject distance. When AF area is set to Whole area AF, selecting a subject by touch locks on to that subject for tracking across the entire screen.
You can choose between AF methods by selecting AF method on the first tab of the camera's AF menu or via the Quick menu, which you access by pressing the Q button on the back of the camera. To set the AF method, you can also press the AF point selection button and then the M-Fn button, if your camera has this. Each press changes to the next AF method.
Specifying the AF point
Although Automatic AF point selection gives good results much of the time, there are situations where it will struggle. If you frame a landscape with a nearby tree branch, for example, the camera might focus on the branch rather than the more distant scene.
For the most precise focusing, you can switch to Single Point Spot AF, Single Point AF or 1-point AF and select an AF point that sits over the area you want to focus on. On recent cameras including the EOS R3, EOS R5 Mark II and EOS R6 Mark II, you can use the initial Servo AF point to select the subject for the automatic system to track.
In the main AF menu on selected EOS cameras including EOS R System models, the Touch & drag AF settings determine whether you can move the AF point by dragging on the camera's screen (Relative) or set the AF point by tapping (Absolute). If you tap the screen to set the focus point, the camera focuses using your specified AF method (AF area) but switches to One-Shot AF, even if the autofocus mode is set to Servo AF.
The Canon EOS R3, EOS R5 Mark II and EOS R1 also offer Eye Control AF, which works with any of the AF point selection methods – switch on this feature in the camera menu, and the camera can set or switch the AF point by detecting what you're looking at in the Electronic Viewfinder. The EVF contains a specialised sensor to achieve this, using an array of infrared LEDs trained at the eye. You don't need to keep staring at the subject – you use the system to acquire the subject you want, and the camera's subject tracking then takes over. The upgraded Eye Control AF system in the EOS R5 Mark II and EOS R1 features a larger eye detection area and an improved detection algorithm that delivers more responsive and stable tracking of eye movement. What's more, multiple calibrations can further enhance the accuracy of the sensors, and hence the Eye Control AF can get even better over time as you use it in multiple different scenarios.
Alternatively, select a convenient point and use the focus-and-recompose technique described under Focus Lock below.
EOS intelligent Tracking and Recognition AF (EOS iTR AFX)
Originally developed for the EOS-1D X Mark III, the advanced EOS iTR AFX system is also featured in selected EOS R System cameras.
The EOS iTR AFX algorithm uses Deep Learning, trained using millions of images. As well as being able to detect a human body, head, face and eye, it can tell when someone is wearing a helmet or goggles or even facing away from the camera. It can also track animals, birds and vehicles, and even recognise where the cockpit is in an aircraft, for example. It can identify both a penguin and an ostrich – and know where to focus on the head and the eye for each of them.
Because the system can detect the presence of these subjects within the frame, the subject can be tracked across the frame accurately and quickly without having to change the focus point continually. If there are multiple faces within the frame, then you can manually select an AF point to ensure that the correct face is focused on initially and then tracked in subsequent frames.
In addition to people, animal and vehicle detection and tracking, Action Priority AF is added as a separate menu option in the EOS R1 and EOS R5 Mark II. Not only does this detect and track players in a game of football, basketball or volleyball, it analyses the ball and player positions and automatically tracks specific types of action, shifting the AF point to where the action is taking place. In a football match, for example, Action Priority AF can recognise movements such as a player shooting, a save by the keeper, headers, throw-ins and sliding tackles. Even if the camera is tracking a different player that has been specified using Register People Priority, the AF frame will automatically move to the person performing the action.
Face Detect + Tracking and Eye Detect AF
Further developments in face recognition capability have enabled the introduction of Face Detect + Tracking and Eye Detect AF on mirrorless EOS cameras and selected DSLRs in Live View mode. In this mode the camera uses artificial intelligence to help it find faces in the scene – and if eye detection is enabled, it can find eyes in the scene and focus on the one that's selected.
The EOS R6 Mark II introduced the option to specify left or right eye priority in advance via the Eye Detection menu, as well as Auto. Another useful face detection feature, found in the EOS R6 Mark II, EOS R10 and EOS R7, is the ability to quickly select one person from several people using the Multi-controller, and lock the AF tracking frame on that person.
The latest evolution of the system enables the camera to be set to detect and prioritise people or animals (dogs, cats, birds or horses) or vehicles (sports cars and motorbikes, aircraft or trains) in the frame, making it ideal for wildlife photography, portraits of humans or pets and motorsport photography. Find out more about the development of the Eye Detection AF system.
An AF point appears over the detected subject, which is then tracked. If no subject is detected, then the entire AF area is used for auto selection AF. If People is set as the subject to detect, the camera will prioritise the eyes and face of the subject. If these cannot be detected, it will maintain focus on the subject’s head or body until the face and eyes are visible. Animal detection works in a similar way, and with Vehicle detection, the camera will target the helmet of racing car drivers or motorcycle riders, and the cockpit or cab window of aircraft and trains.
Subject tracking
The most recent Canon cameras use Deep Learning artificial intelligence, trained using thousands of images of objects in the real world, to enable them to recognise specific subjects – people, animals, birds or vehicles – wherever they are in the frame.
The cameras are even able to track people when they are wearing a mask, helmet or sunglasses, and when the subject to detect is set to Vehicles, the cameras can identify and track racing cars, motorcycles, aircraft and trains. They can also distinguish between closed and open cockpit cars, and target the driver's helmet when it's visible. This means that the cameras will keep the car or motorbike in focus, but can switch to focusing on the driver's or rider's helmet when it becomes distinguishable.
Subject tracking works hierarchically, prioritising the eyes of the subject if Eye Detection AF is activated, but if the eyes are too small or not visible then it will look for a face, head or body in that order. Upper Body is also available in newer cameras.
You activate subject tracking in the camera's main menu; beneath that, there's the option to choose the subject to detect – People, Animals, Vehicles or No Priority. This works as you would expect: if you choose Animals, for example, the camera will look for an animal to focus on even if there is also a human being in the frame. In the EOS R1 and EOS R5 Mark II, a new Auto option has also been added – select this, and the camera automatically selects the main subject to track from any people, animals or vehicles in the scene. The same screen also has the option to enable Eye Detection.
Register People Priority, which is available in the EOS R1, EOS R3 and EOS R5 Mark II, makes it possible to pre-register specific people that you want the camera to focus on. You can do this using an existing image on your memory card or by taking a picture of the person you want. The camera will then prioritise and track the registered faces, in the order of priority you specify, even in crowded environments with a group of people in the frame. In the EOS R1 and EOS R5 Mark II this function is further enhanced and is capable of recognising people from more angles, which delivers a more advanced experience and a better hit-rate.
Canon cameras' AF tracking compared
Which Canon cameras have Animal Eye Detection AF, Vehicle AF, or Register People Priority? This table explains the AF tracking capabilities in each Canon EOS R System camera model, with the EOS-1D X Mark III for comparison.
Camera Model
Canon EOS R1
Canon EOS-1D X Mark III
Canon EOS R5 Mark II
Canon EOS R3
Canon EOS R5
Canon EOS R5 C
Canon EOS R6
Canon EOS R6 Mark II
Canon EOS R8
Canon EOS R7
Canon EOS R50
Canon EOS R10
Canon EOS R100
Canon EOS R
Canon EOS RP
Canon EOS R1
Canon EOS-1D X Mark III
Canon EOS R5 Mark II
Canon EOS R3
Canon EOS R5
Canon EOS R5 C
Canon EOS R6
Canon EOS R6 Mark II
Canon EOS R8
Canon EOS R7
Canon EOS R50
Canon EOS R10
Canon EOS R100
Canon EOS R
Canon EOS RP
AF Configuration Tool
Within the AF settings of more advanced EOS cameras, there are some configuration options that enable the photographer to customise how the AF system responds to certain situations.
For example, the Tracking sensitivity control is useful for adjusting how the camera responds to objects coming between it and the subject. The standard setting is zero, and it's useful for photographing a wide range of moving subjects. Selecting the -1 or -2 (Locked on) setting tells the camera to continue to track the subject even if an object comes between it and the target. This is useful when panning, for example, when objects such as trees, lamp posts or the pillars of a stadium are likely to get in the way briefly. It can also help when photographing swimming when the subject momentarily disappears beneath the water.
Adjusting the Tracking sensitivity in the other direction, to +1 or +2 (Responsive), sets the camera to respond quickly to changes in the subject distance. This is useful when the subject is coming towards the camera quickly, or if you want the camera to always focus on the closest subject. However, if you're photographing a team sport, this can result in the focus frequently jumping between players.
The Acceleration/Deceleration tracking control determines how the AF system responds to changes in speed. With three setting levels, you can adjust the focus response for greater stability in the AF system. The 0 setting is designed for subjects that don't change their speed much during motion – for example if you're photographing racing cars or cyclists in a straight, flat part of a track. Settings 1 and 2 are designed for subjects that move suddenly or accelerate or stop suddenly. They are useful for fast-moving, unpredictable subjects such as basketball players. These settings should not be used with smooth-moving subjects as it could make the focus more unstable for those subjects.
AF point auto-switching is used in combination with Auto AF point selection, Zone AF or AF Point Expansion. It allows you to adjust the speed at which the AF points are changed to track a subject moving across the frame. The default 0 setting will allow for gradual AF point change. Selecting 1 or 2 will gradually increase the speed at which a different AF point is selected. In the latest cameras, including the EOS-1D X Mark III, EOS R3, EOS R5 and EOS R6, the AF point auto-switching options have moved to the general AF menus.
AF configuration presets
While the configuration controls can be set to custom values, there are up to six presets designed for different scenarios and, instead of having to remember what each setting does, the camera provides an icon and example usage within the menu display to make selecting the correct option easy. Recent high-end EOS cameras also feature an Auto setting in which the camera adjusts the tracking automatically as it adapts to the subject movement. The EOS R5 Mark II goes further, introducing a more streamlined adjustment of Servo AF characteristics where the presets have been replaced with two options: Auto and Manual.
Case 1: a versatile multi-purpose setting – The default setting, Case 1 is for general-purpose shooting. It provides accurate and fast focusing across a wide range of shooting situations. However, simply selecting this option for everything will mean you don't make full use of the AF system, and a little adjustment will most likely give you even better results.
Case 2: the camera continues to track subjects, ignoring possible obstacles – The camera will continue to track focus the subject, even if the subject moves away from the AF point or an obstacle momentarily comes between you and your subject. This is useful for subjects such as swimming, freestyle skiing or tennis.
Case 3: the camera focuses instantly when a subject enters the active AF area – Case 3 is useful for rapidly locking on to a new subject, or for switching between subjects rapidly. As an example, this would suit alpine skiing or the start of a cycle race, where there are several subjects and you may wish to select between them quickly.
Case 4: for subjects that accelerate or decelerate quickly – Case 4 is designed for subjects that change speed or direction rapidly, as happens in motorsports or football. The camera will prioritise the speed of tracking to keep up with these changes in speed, even if the focus results suggest it is a very rapid change in focus distance.
Case 5: for subjects that move erratically in any direction – Case 5 is designed for use with automatic AF point selection, Zone AF and AF Point Expansion and subjects that move erratically, up and down or left and right. The settings allow the camera to switch AF points rapidly to keep track of the motion. It is most suited to subjects like figure skaters or aerobatic flying displays, where erratic motion is likely to be encountered. This setting is not available in cameras that offer Case A (see below).
Case 6: for subjects that change speed and move erratically – Case 6 is like a combination of both Case 4 and Case 5. Like Case 5 it is used with Automatic AF point selection, Zone AF and AF Point Expansion. Even if the subject starts or stops suddenly or makes erratic direction changes, this setting will enable the camera to respond quickly to keep the focus accurately tracked on the subject. This setting is most useful when shooting subjects like basketball or gymnastics or birds in flight, where abrupt speed and direction changes are common. This setting is also not available in cameras that offer Case A.
Case A: the tracking adapts automatically to subject movement – Case A is a more advanced default setting than Case 1 as the camera automatically adapts to the subject's movement and the parameters are adjusted automatically. This was introduced in the EOS-1D X Mark III and is also available in the latest EOS R System cameras, which no longer offer Case 5 and Case 6.
Another useful AF configuration function introduced on the EOS R5 Mark II and EOS R1 is the ability to register specific autofocus setups as presets. Select Register/recall AF-related settings, and the autofocus settings that are currently configured on the camera, including AF operation, AF area and Subject to detect, can be saved together as a single preset. This can then be rapidly recalled, allowing the AF settings to be applied all at once. The EOS R5 Mark II and EOS R1 also have an AF guide that helps with various situations and provides multiple different settings for different scenarios.
Orientation linked AF point
One issue with cameras that have multiple AF points is that the active AF point may need to change to keep the subject sharp when you switch from shooting in landscape to shooting in portrait orientation. For example, if your active AF point is at the top-left in landscape orientation, where a face is likely to be, but you then turn the camera sideways, then that point is now at the bottom-left, where faces are less likely to occur.
Some EOS cameras enable this switch in AF point or Zone AF frame to be made automatically if the option is selected via the AF menu or the Custom Function menu. It’s also possible to set different AF points or Zone AF frames for when the camera grip is vertical with the camera grip up and with the grip down.
Registered AF point
Some EOS cameras feature a Registered AF Point (also known as the Home Position). This allows you to pre-select a focus point and switch to it instantly whenever required by pressing a button selected for the task in the Custom Controls section of the menu. This may work in combination with the orientation linking function, enabling you to register a point for each orientation.
This feature is most useful for sports photographers, who may have two or three areas of the viewfinder where the action is most likely to take place. However, remembering to switch focus points at the right moment will need some practice.
Many EOS cameras enable you to select an AF frame as the AF start position to start tracking over the whole area or within zones. By registering an AF point, you can quickly shift from focusing on a specific part of the frame to a wider area and vice versa, by pressing the customised button.
On some cameras, a specific AF method can be saved for each Registered AF Point, so that the camera switches to the preset AF method when you switch focus point. This can be very useful for a bird photographer, for example, who could use this feature to quickly switch from a Spot AF point for precisely focusing on a static subject, to a wide Zone AF pattern for quickly acquiring and tracking a bird in flight.
If your camera does not offer a Registered AF point, switch to the centre point instead, and use focus lock to keep your chosen subject sharp.
Focus lock
The central AF point of a DSLR in viewfinder mode is usually the most sensitive, which is helpful with tricky subjects or in low light. While using a single central focusing point might seem limiting because you don't always want your subject to be in the centre of the frame, it can actually be very versatile.
To focus on an off-centre subject, use the focus-and-recompose technique:
- Move the camera, positioning the centre of the viewfinder frame and the active AF point over the centre of the subject.
- Partially press the shutter button to lock the focus without taking a picture.
- Keep the button partially pressed and move the camera to recompose the viewfinder image.
- Press the shutter button right down to take the picture.
Focus lock also locks the exposure. If you want to take focus and exposure readings from different areas, first compose the image in the viewfinder so that the area you want to take an exposure reading from is in the centre of the frame. Then press the exposure lock (*) button on the back of the camera. Next, recompose the image and press the shutter button. This will refocus the lens and take the picture, while using the locked exposure.
Using the Dual Pixel CMOS AF system of a mirrorless camera, you’re free to select an AF point over a much wider area, and then lock the focus by partially pressing the shutter button. With modern EOS cameras, such as the EOS R5 Mark II, EOS R50 or EOS R8, it’s possible to lock and unlock the focus on a specific subject even when the AF area is set to Whole area AF, by tapping the subject on the screen.
Related articles
-
CAMERA FEATURES
Viewfinder vs LCD Display
Viewfinder or LCD screen? Discover the differences on DSLR and mirrorless cameras, and find out more about electronic and optical viewfinders.
-
CAMERA FEATURES
Depth of Field
Depth of field, the area of apparent sharpness in an image, is one of the main creative controls in photography. Here's all you need to know.
-
TECHNOLOGY
How Canon's intelligent autofocus system works
Find out how advanced subject detection and tracking powered by deep learning AI "makes it practically impossible to miss a shot".
-
LENSES
Canon lens focusing motor technology
It's easy to take the technology behind autofocus for granted. Find out about the history of Canon's Ultra Sonic Motor (USM) and STM technologies and how they deliver fast, smooth and quiet AF capabilities.
Related products
-
Spejlløse kameraer
EOS R1
Vær på forkant med vores nye EOS-flagskib – bygget helt fra bunden til at levere utrolige hastigheder -
Spejlløse kameraer
EOS R3
Med hastigheden i centrum er dette det spejlløse kamera, som professionelle sports-, nyheds- og naturfotografer har ventet på. -
Spejlløse kameraer
EOS R5 Mark II
Fang øjeblikket med et kamera, der blander fantastisk hastighed med utrolig opløsning og enestående 8K-video. -
Spejlløse kameraer
EOS R6 Mark II
Stillbilleder eller video, action eller portræt – EOS R6 Mark II's blanding af ydeevne og billedkvalitet lader din kreativitet trives -
Spejlløse kameraer
EOS R8
Gå et niveau op til fullframe-fotografering og -video, og virkeliggør dine kreative ambitioner. -
Spejlløse kameraer
EOS R10
Tag dine næste skridt inden for fotografering og video med et spejlløst EOS R-systemkamera, der er bygget op omkring en sensor i APS-C-størrelse.